



# THE WATER-ENERGY NEXUS

#### Session 1. EarthCheck Inner Circle Forum, 2015 Centara Grand, Centralworld, Bangkok, Thailand

#### Raj V. Rajan, PhD, PE

RD&E VP, Global Sustainability Technical Leader April 22, 2015



### OUTLINE

- 2015 Global Risk Landscape
- Climate Change
- Upstream Collision
- Productivity in Commerce

- On-Premise Nexus
- Downstream Collision
- Innovation Opportunities
- Key Take-Aways



## **GLOBAL RISK LANDSCAPE**







### **CLIMATE CHANGE- TRENDS**



April 20, 2015: Globally, March 2015 marks the highest March surface temperature since global temperature records began in 1880.



# **CLIMATE CHANGE & FOOD SECURITY**

# The future of food and farming: 2050s

By 2050, climatic impacts on food security will be unmistakable. There are likely to be 9 billion people on the planet, most people will live in cities and demand for food will increase significantly.

#### Widespread impacts on food and farming are highly likely





## **UPSTREAM ENERGY-WATER COLLISION**

#### Thirst for Power

- electricity for one load of laundry, 3-10x more water than is used to wash the clothes.

#### Withdrawal Symptoms

- freshwater withdrawn to cool power plants is roughly the same as that for crop irrigation.

#### In Hot Water

- coal and nuclear plants report releasing water at peak temperatures of 100°F or more.

#### High and Dry

- water troubles shut down power plants, due to shortage or ambient water temperature.

#### Wet Renewables

- low C can mean low water - or not (CSP, biofuels, hydroelectric, geothermal)

#### MPG or GPM

- water footprint of biofuels- 20 GPM (corn ethanol), 1 GPM cellulosic, 0.1 GPM gasoline.

#### • The Flip Side

- California uses 19 percent of its electricity and 32 percent of its natural gas for water.



### **POWER SHARE- FRESHWATER DEPENDENCE**



Share of power generation capacity with freshwater once-through cooling and hydro in selected countries, 2010



# **UPSTREAM ENERGY-WATER COLLISION**

#### Thirst for Power

- electricity for one load of laundry, 3-10x more water than is used to wash the clothes.

#### Withdrawal Symptoms

- freshwater withdrawn to cool power plants is roughly the same as that for crop irrigation.

#### In Hot Water

- coal and nuclear plants report releasing water at peak temperatures of 100°F or more.

#### High and Dry

- water troubles shut down power plants, due to shortage or ambient water temperature.

#### Wet Renewables

- low C can mean low water - or not (CSP, biofuels, hydroelectric, geothermal)

#### MPG or GPM

- water footprint of biofuels- 20 GPM (corn ethanol), 1 GPM cellulosic, 0.1 GPM gasoline.

#### • The Flip Side

- California uses 19 percent of its electricity and 32 percent of its natural gas for water.



### WATER & ENERGY IN COOLING





# POWER SHARE- WITHDRAWAL & CONSUMPTION



Water intensity of energy production for selected regions of the world, if water efficient cooling methods are implemented



# **UPSTREAM ENERGY-WATER COLLISION**

#### Thirst for Power

- electricity for one load of laundry, 3-10x more water than is used to wash the clothes.
- Withdrawal Symptoms
  - freshwater withdrawn to cool power plants is roughly the same as that for crop irrigation.
- In Hot Water
  - coal and nuclear plants report releasing water at peak temperatures of 100°F or more.
- High and Dry
  - water troubles shut down power plants, due to shortage or ambient water temperature.

#### Wet Renewables

- low C can mean low water - or not (CSP, biofuels, hydroelectric, geothermal)

#### • MPG or GPM

- water footprint of biofuels- 20 GPM (corn ethanol), 1 GPM cellulosic, 0.1 GPM gasoline.

#### • The Flip Side

- California uses 19 percent of its electricity and 32 percent of its natural gas for water.



# **ENERGY PRODUCTION & WATER QUALITY**

|                                   | Process                     | Connection to Water Quality | Connection to Water Quantity |
|-----------------------------------|-----------------------------|-----------------------------|------------------------------|
| Energy Extraction<br>& Production | Oil and gas exploration     | Impact on shallow           | Water for drilling, com-     |
|                                   |                             | groundwater quality         | pletion, and fracturing      |
|                                   | Oil and gas production      | Produced water can affect   | Large volume of pro-         |
|                                   |                             | surface and groundwater     | duced, impaired water        |
|                                   | Coal and uranium            | Tailings and drainage can   | Mining operations can        |
|                                   | mining                      | affect surface water and    | generate large quantities    |
|                                   |                             | groundwater                 | of water                     |
| Refining &<br>Processing          | Traditional oil and gas     | End use can affect water    | Water needed to refine oil   |
|                                   | refining                    | quality                     | and gas                      |
|                                   | <b>Biofuels and ethanol</b> | Refinery wastewater         | Water for growing and        |
|                                   |                             | treatment                   | refining                     |
|                                   | Synfuels and hydrogen       | Wastewater treatment        | Water for synthesis or       |
|                                   |                             |                             | steam reforming              |



# **UPSTREAM ENERGY-WATER COLLISION**

#### Thirst for Power

- electricity for one load of laundry, 3-10x more water than is used to wash the clothes.
- Withdrawal Symptoms
  - freshwater withdrawn to cool power plants is roughly the same as that for crop irrigation.
- In Hot Water
  - coal and nuclear plants report releasing water at peak temperatures of 100°F or more.
- High and Dry
  - water troubles shut down power plants, due to shortage or ambient water temperature.
- Wet Renewables
  - low C can mean low water or not (CSP, biofuels, hydroelectric, geothermal)
- MPG or GPM
  - water footprint of biofuels- 20 GPM (corn ethanol), 1 GPM cellulosic, 0.1 GPM gasoline.

#### • The Flip Side

- California uses 19 percent of its electricity and 32 percent of its natural gas for water.



### **ENERGY EMBEDDED IN WATER**





### **ENERGY & WATER PRODUCTIVITY IN COMMERCE**



GHG Emissions (Metric Tons CO2e/\$MM Operating Income)



### WATER USE IN FULL-SERVICE LODGING

- A full-service hotel has 300 rooms with 1.5 guests/room and 75% occupancy typically consumes 150m<sup>3</sup> of water/day
- A full-service hotel has a cooling tower (CT) and on premise laundry (OPL)







-CT+OPL



### WATER-ENERGY NEXUS: LAUNDRY

Ecolab's Aquanomic/ Ensure Laundry Programs deliver clean, white, and soft results while saving water and energy. Both the Smart Wash process and best-practice optimization reduce the number of rinse cycles, and low temperature chemistry reduces the wash water temperature to 40°C.



#### Performance Factors (water and energy savings per unit solid product)

- 33 m<sup>3</sup> of water savings per 4 x 9 lb case
- 1,700 kWh of energy savings per 4 x 9 lb case







### WATER-ENERGY NEXUS: WAREWASHING

Ecolab's **Apex Warewashing System** delivers superior results with sustainable low phosphorus products and non-corrosive, color-coded chemistry to enhance user safety. The Apex controller also reduces rewashing, saving water and energy.



#### Performance Factors (water and energy savings per unit solid product)

- 0.9 m<sup>3</sup> of water savings per 4 x 6.5 lb case
- 103 kWh of energy savings per 4 x 6.5 lb case







### WATER-ENERGY NEXUS: FLOOR CARE

Ecolab's Wash'n Walk® Floor Cleaner uses cool water dilution and a "no–rinse" formula to reduce slips and falls due to greasy floors. It also saves large amounts of rinse water and the energy needed to heat normal floor wash water.



#### Performance Factors (water and energy savings per unit solid product)

- 6 m<sup>3</sup> of water savings per case
- 363 kWh of energy savings per case







### **OPTIMIZING WATER AND ENERGY USE**

It Matters to our Customers that we can leverage our chemistry beyond core outcomes-

*Process water is Valuable 'Energy-Rich' Water: heated, chilled, filtered, treated, conveyed, ....disposed* 

Big leverage: Water + Energy Spend >> chemical spend

- ▲ 300-Room Hotel:
  - \$667K/yr water & energy spend, 33K/yr chemical spend
  - Cooling: \$165K, 44x chemical spend
  - Rooms: \$48K, 9x chemical spend
  - Laundry: \$24K, 3x chemical spend
  - Kitchen: \$24K, 2x chemical spend
  - Pool: \$7K, 1x chemical spend
  - Other: \$399K, no chemical spend





### **DOWNSTREAM ENERGY-WATER COLLISION**





### **OPPORTUNITIES FOR INNOVATION**





### **KEY TAKE-AWAYS**

### Upstream Nexus

- Primary Energy
- Power Purchase
  - Water in Energy- Quality and Quality Impacts
  - Energy in Water- Climate Change Impacts

### In-Stream Nexus

- Utilities: Facility Cooling
- Services: Laundry, Warewashing, Facility Care
  - Quantify and Monetize Value of embedded energy in water savings

### Downstream Nexus

- Water Reuse
  - Consider energy implications of point of reuse
  - Impact of green and grey infrastructure







# DISCUSSIONS



